If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-14p=19
We move all terms to the left:
7p^2-14p-(19)=0
a = 7; b = -14; c = -19;
Δ = b2-4ac
Δ = -142-4·7·(-19)
Δ = 728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{728}=\sqrt{4*182}=\sqrt{4}*\sqrt{182}=2\sqrt{182}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{182}}{2*7}=\frac{14-2\sqrt{182}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{182}}{2*7}=\frac{14+2\sqrt{182}}{14} $
| 11/19=44/x | | 7-3x=x+4(2+x) | | 1/4x=x=-3+1/2x | | x–6+1=10 | | 1.6x+5(8-x)=23 | | (4x+6)=(6x+1) | | 0.5x-0.25=-2 | | -8x+4=2x-3 | | 6-(4k-5)=35 | | 0.6-y=1.8 | | 6.25x+50=200 | | -3v-30=-6(v+2) | | 18m+50=1079 | | 22(3x+4)=4280 | | y+(5y-55)=35 | | 18m+50=1,079 | | 5+1.6m=1 | | x/8-5=7/16 | | k/9-3=-3 | | -18x+8x=2(4x-9) | | 6(x-4)=4(x-2) | | -6=-2+2p | | 1/2z+6=3/2(z=6) | | x^+8x+14=0 | | (1/2)(4-6x)=5 | | 11=3-(1/7x) | | x*2+8x+14=0 | | 10r+4=38 | | 9x-12=5x+16 | | 13x-5=-5+13x | | -3(7-3n)=6 | | 4-10r=48 |